Detailed information of deep learning profile BP001278.1

This page shows detailed deep learning-derived predictions and motifs for THRB in HepG2 using a single trained BPNet model.

Model details

Name: THRB
Model ID: BP001278.1
Cell line/tissue: HepG2
Class: Nuclear receptors with C4 zinc fingers
Family: Thyroid hormone receptor-related factors (NR1)
JASPAR ID: MA1576.2
Taxon: Vertebrates
Species: Homo sapiens
Data Type: ChIP-seq
Uniprot ID: P10828  
Source: ENCSR430JGJ
Model: BPNet
Download trained model
Download TF-MoDISco Report

Contribution weight matrix (CWM)

A [ -0.00 -0.00 0.00 0.00 0.01 -0.00 -0.00 -0.00 -0.00 0.03 0.00 -0.00 -0.00 0.00 0.04 -0.00 -0.00 0.00 -0.00 0.03 0.00 -0.00 -0.00 -0.00 ]
C [ 0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00 0.03 -0.00 0.00 0.00 0.01 0.00 -0.00 0.00 -0.00 -0.00 0.03 -0.00 0.00 0.00 0.00 0.00 ]
G [ 0.00 -0.00 -0.00 0.00 0.01 0.04 0.03 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.01 0.00 0.08 0.06 -0.00 -0.00 0.00 -0.00 0.00 0.00 -0.00 ]
T [ -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.04 0.00 -0.00 0.00 0.00 0.02 -0.00 -0.00 -0.00 0.00 0.02 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 ]

Frequency matrix

A [ 1346 1363 2043 1383 1286 1335 1216 1677 2016 1432 1321 1389 1489 1166 1733 1846 3056 402 911 116 259 4887 1015 1037 289 1441 4648 8 29 1470 271 5099 1185 1505 1871 1350 1231 1407 1222 1591 2049 1349 1969 1256 1352 2002 1313 1319 1336 1312 ]
C [ 1445 1308 1334 1335 1444 2053 2023 1364 1356 1371 1334 1829 1413 1806 1405 1240 212 60 61 642 4518 322 2150 2400 1603 1153 58 1 17 887 4842 195 1690 1325 1211 1341 1449 1290 1713 1413 1365 1322 1411 2018 2041 1319 1454 2014 2014 1423 ]
G [ 2111 2209 1520 2258 2165 1538 1552 1909 1615 2233 2348 1576 2081 2158 1805 2170 2777 5441 4415 930 552 654 1140 1113 424 3224 1408 6126 5926 458 541 495 2268 2305 1935 2288 1613 1624 1711 2013 1581 2319 1617 1532 1544 1610 2219 1529 1507 1416 ]
T [ 1253 1275 1258 1179 1260 1229 1364 1205 1168 1119 1152 1361 1172 1025 1212 899 110 252 768 4467 826 292 1850 1605 3839 337 41 20 183 3340 501 366 1012 1020 1138 1176 1862 1834 1509 1138 1160 1165 1158 1349 1218 1224 1169 1293 1298 2004 ]

Hypothetical CWM

A [ -0.00 -0.00 0.00 0.01 0.03 -0.01 -0.01 -0.04 -0.02 0.04 0.01 0.00 -0.02 0.02 0.05 -0.04 -0.02 0.01 -0.02 0.04 0.01 0.00 -0.00 0.00 ]
C [ 0.01 0.01 0.01 0.01 -0.01 -0.02 -0.04 0.00 0.04 -0.02 0.01 0.02 0.03 0.01 -0.01 -0.02 -0.03 0.00 0.04 -0.02 0.01 0.01 0.00 0.01 ]
G [ 0.01 0.00 -0.00 0.01 0.02 0.05 0.04 0.01 -0.00 0.02 -0.00 0.00 -0.01 0.02 0.03 0.08 0.06 -0.01 -0.01 0.01 0.00 0.01 0.01 0.00 ]
T [ 0.00 -0.00 0.00 -0.01 -0.04 -0.01 0.02 0.05 0.01 -0.02 0.02 0.01 0.03 -0.02 -0.05 -0.01 0.01 0.03 0.00 -0.02 -0.00 0.00 -0.00 0.00 ]

Other motifs identified by TF-MoDISco

Motif name: counts.pos_patterns.pattern_1

Num. of seqlets: 2665

Motif name: counts.pos_patterns.pattern_2

Num. of seqlets: 2217

Motif name: counts.pos_patterns.pattern_3

Num. of seqlets: 1479

Motif name: counts.pos_patterns.pattern_4

Num. of seqlets: 729

Motif name: counts.pos_patterns.pattern_5

Num. of seqlets: 557

Motif name: counts.pos_patterns.pattern_6

Num. of seqlets: 480

Motif name: counts.pos_patterns.pattern_7

Num. of seqlets: 193

Motif name: counts.pos_patterns.pattern_8

Num. of seqlets: 163

Motif name: counts.pos_patterns.pattern_9

Num. of seqlets: 101

Motif name: counts.pos_patterns.pattern_10

Num. of seqlets: 70

Motif name: counts.pos_patterns.pattern_11

Num. of seqlets: 46

Motif name: counts.pos_patterns.pattern_12

Num. of seqlets: 21