Detailed information of deep learning profile BP001278.1

This page shows detailed deep learning-derived predictions and motifs for THRB in HepG2 using a single trained BPNet model.

Model details

Name: THRB
Model ID: BP001278.1
Cell line/tissue: HepG2
Class: Nuclear receptors with C4 zinc fingers
Family: Thyroid hormone receptor-related factors (NR1)
JASPAR ID: MA1576.2
Taxon: Vertebrates
Species: Homo sapiens
Data Type: ChIP-seq
Uniprot ID: P10828  
Source: ENCSR430JGJ
Model: BPNet
Download trained model
Download TF-MoDISco Report

Contribution weight matrix (CWM)

A [ 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.02 0.00 -0.00 -0.00 -0.00 0.02 0.00 0.00 -0.00 0.00 0.04 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 ]
C [ -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.06 0.08 0.00 0.01 -0.00 -0.00 -0.00 0.00 -0.00 0.00 0.03 0.04 0.01 0.00 -0.00 -0.00 0.00 ]
G [ 0.00 0.00 0.00 0.00 -0.00 0.03 -0.00 -0.00 0.00 -0.00 0.00 0.01 0.00 0.00 -0.00 0.03 0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 ]
T [ -0.00 -0.00 -0.00 0.00 0.03 -0.00 0.00 -0.00 -0.00 0.04 0.00 -0.00 -0.00 0.00 0.03 -0.00 -0.00 -0.00 -0.00 0.01 0.00 0.00 -0.00 -0.00 ]

Frequency matrix

A [ 2004 1298 1293 1169 1224 1218 1349 1158 1165 1160 1138 1509 1834 1862 1176 1138 1020 1012 366 501 3340 183 20 41 337 3839 1605 1850 292 826 4467 768 252 110 899 1212 1025 1172 1361 1152 1119 1168 1205 1364 1229 1260 1179 1258 1275 1253 ]
C [ 1416 1507 1529 2219 1610 1544 1532 1617 2319 1581 2013 1711 1624 1613 2288 1935 2305 2268 495 541 458 5926 6126 1408 3224 424 1113 1140 654 552 930 4415 5441 2777 2170 1805 2158 2081 1576 2348 2233 1615 1909 1552 1538 2165 2258 1520 2209 2111 ]
G [ 1423 2014 2014 1454 1319 2041 2018 1411 1322 1365 1413 1713 1290 1449 1341 1211 1325 1690 195 4842 887 17 1 58 1153 1603 2400 2150 322 4518 642 61 60 212 1240 1405 1806 1413 1829 1334 1371 1356 1364 2023 2053 1444 1335 1334 1308 1445 ]
T [ 1312 1336 1319 1313 2002 1352 1256 1969 1349 2049 1591 1222 1407 1231 1350 1871 1505 1185 5099 271 1470 29 8 4648 1441 289 1037 1015 4887 259 116 911 402 3056 1846 1733 1166 1489 1389 1321 1432 2016 1677 1216 1335 1286 1383 2043 1363 1346 ]

Hypothetical CWM

A [ 0.00 -0.00 0.00 -0.00 -0.02 0.00 0.03 0.01 -0.01 -0.05 -0.02 0.03 0.01 0.02 -0.02 0.01 0.05 0.02 -0.01 -0.04 -0.01 0.00 -0.00 0.00 ]
C [ 0.00 0.01 0.01 0.00 0.01 -0.01 -0.01 0.06 0.08 0.03 0.02 -0.01 0.00 -0.00 0.02 -0.00 0.01 0.04 0.05 0.02 0.01 -0.00 0.00 0.01 ]
G [ 0.01 0.00 0.01 0.01 -0.02 0.04 0.00 -0.03 -0.02 -0.01 0.01 0.03 0.02 0.01 -0.02 0.04 0.00 -0.04 -0.02 -0.01 0.01 0.01 0.01 0.01 ]
T [ 0.00 -0.00 0.00 0.01 0.04 -0.02 0.01 -0.02 -0.04 0.05 0.02 -0.02 0.00 0.01 0.04 -0.02 -0.04 -0.01 -0.01 0.03 0.01 0.00 -0.00 -0.00 ]

Other motifs identified by TF-MoDISco

Motif name: counts.pos_patterns.pattern_1

Num. of seqlets: 2665

Motif name: counts.pos_patterns.pattern_2

Num. of seqlets: 2217

Motif name: counts.pos_patterns.pattern_3

Num. of seqlets: 1479

Motif name: counts.pos_patterns.pattern_4

Num. of seqlets: 729

Motif name: counts.pos_patterns.pattern_5

Num. of seqlets: 557

Motif name: counts.pos_patterns.pattern_6

Num. of seqlets: 480

Motif name: counts.pos_patterns.pattern_7

Num. of seqlets: 193

Motif name: counts.pos_patterns.pattern_8

Num. of seqlets: 163

Motif name: counts.pos_patterns.pattern_9

Num. of seqlets: 101

Motif name: counts.pos_patterns.pattern_10

Num. of seqlets: 70

Motif name: counts.pos_patterns.pattern_11

Num. of seqlets: 46

Motif name: counts.pos_patterns.pattern_12

Num. of seqlets: 21