Detailed information of deep learning profile BP001241.1

This page shows detailed deep learning-derived predictions and motifs for RXRB in HepG2 using a single trained BPNet model.

Model details

Name: RXRB
Model ID: BP001241.1
Cell line/tissue: HepG2
Class: Nuclear receptors with C4 zinc fingers
Family: RXR-related receptors (NR2)
JASPAR ID: MA0855.1
Taxon: Vertebrates
Species: Homo sapiens
Data Type: ChIP-seq
Uniprot ID: P28702  
Source: ENCSR560SEP
Model: BPNet
Download trained model
Download TF-MoDISco Report

Contribution weight matrix (CWM)

A [ 0.00 0.00 0.00 -0.00 -0.00 0.00 0.02 0.01 -0.00 -0.00 -0.00 -0.00 -0.00 0.01 0.00 -0.00 -0.00 0.00 -0.00 -0.00 ]
C [ 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 0.02 0.07 0.00 0.00 -0.00 -0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 ]
G [ 0.00 0.00 0.00 0.00 -0.00 0.04 0.00 -0.00 0.00 0.00 -0.00 -0.00 0.04 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 ]
T [ -0.00 -0.00 -0.00 0.00 0.02 -0.00 -0.00 -0.00 -0.00 0.04 0.04 0.04 -0.00 -0.00 -0.00 -0.00 0.01 0.00 0.00 0.00 ]

Frequency matrix

A [ 2065 2198 2137 2150 2208 2144 2128 2103 2180 2184 2386 2329 2130 2196 2543 2455 2192 1782 706 979 4796 4341 26 28 150 68 710 3070 2681 637 1080 1980 1853 2319 1930 2083 2040 2015 2137 2237 2226 2193 2180 2140 2157 2124 2191 2180 2143 2229 ]
C [ 2139 2171 2077 2228 2331 2271 2198 2187 2059 2018 2103 2164 2265 2243 2194 2585 2183 2481 602 277 910 3797 8607 484 1200 185 421 1992 3453 7018 3165 2620 1979 1513 1858 2207 2371 2367 2169 2232 2104 2069 2071 2048 2093 2110 2339 2177 2180 2092 ]
G [ 2138 1956 2064 2059 1838 2031 1996 2112 2088 2016 1925 2094 2112 2187 1959 1870 1854 2249 607 7148 2636 88 15 11 82 114 7276 2259 625 270 352 1784 2324 2196 2213 2015 1928 1885 1954 1901 1906 2134 2035 2053 2049 2075 1980 1998 2108 1955 ]
T [ 2345 2362 2409 2250 2310 2241 2365 2285 2360 2469 2273 2100 2180 2061 1991 1777 2458 2175 6772 283 345 461 39 8164 7255 8320 280 1366 1928 762 4090 2303 2531 2659 2686 2382 2348 2420 2427 2317 2451 2291 2401 2446 2388 2378 2177 2332 2256 2411 ]

Hypothetical CWM

A [ -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.02 0.00 0.03 0.03 -0.01 -0.02 -0.01 -0.02 0.01 0.02 0.01 -0.01 -0.01 0.00 -0.00 -0.00 -0.00 ]
C [ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.01 -0.00 0.03 0.07 0.01 0.01 0.01 -0.00 0.01 0.02 0.04 0.02 0.01 0.01 0.01 0.00 ]
G [ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.01 0.04 0.02 -0.02 -0.01 -0.01 -0.02 -0.01 0.04 0.02 -0.01 -0.00 0.00 0.01 0.01 0.01 0.01 ]
T [ -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 0.00 0.03 -0.01 -0.01 -0.01 -0.01 0.04 0.04 0.04 -0.01 -0.00 0.00 -0.00 0.01 0.00 0.00 0.00 0.00 ]

Other motifs identified by TF-MoDISco

Motif name: counts.pos_patterns.pattern_1

Num. of seqlets: 4701

Motif name: counts.pos_patterns.pattern_2

Num. of seqlets: 2823

Motif name: counts.pos_patterns.pattern_3

Num. of seqlets: 2338

Motif name: counts.pos_patterns.pattern_4

Num. of seqlets: 1978

Motif name: counts.pos_patterns.pattern_5

Num. of seqlets: 1653

Motif name: counts.pos_patterns.pattern_6

Num. of seqlets: 1391

Motif name: counts.pos_patterns.pattern_7

Num. of seqlets: 1315

Motif name: counts.pos_patterns.pattern_8

Num. of seqlets: 1020

Motif name: counts.pos_patterns.pattern_9

Num. of seqlets: 995

Motif name: counts.pos_patterns.pattern_10

Num. of seqlets: 829

Motif name: counts.pos_patterns.pattern_11

Num. of seqlets: 717

Motif name: counts.pos_patterns.pattern_12

Num. of seqlets: 340

Motif name: counts.pos_patterns.pattern_13

Num. of seqlets: 117

Motif name: counts.pos_patterns.pattern_14

Num. of seqlets: 105

Motif name: counts.pos_patterns.pattern_15

Num. of seqlets: 77

Motif name: counts.pos_patterns.pattern_18

Num. of seqlets: 42

Motif name: counts.pos_patterns.pattern_20

Num. of seqlets: 26

Motif name: counts.pos_patterns.pattern_22

Num. of seqlets: 20