Detailed information of deep learning profile BP001241.1

This page shows detailed deep learning-derived predictions and motifs for RXRB in HepG2 using a single trained BPNet model.

Model details

Name: RXRB
Model ID: BP001241.1
Cell line/tissue: HepG2
Class: Nuclear receptors with C4 zinc fingers
Family: RXR-related receptors (NR2)
JASPAR ID: MA0855.1
Taxon: Vertebrates
Species: Homo sapiens
Data Type: ChIP-seq
Uniprot ID: P28702  
Source: ENCSR560SEP
Model: BPNet
Download trained model
Download TF-MoDISco Report

Contribution weight matrix (CWM)

A [ 0.00 0.00 0.00 0.01 -0.00 -0.00 -0.00 -0.00 0.04 0.04 0.04 -0.00 -0.00 -0.00 -0.00 0.02 0.00 -0.00 -0.00 -0.00 ]
C [ 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 0.04 -0.00 -0.00 0.00 0.00 -0.00 0.00 0.04 -0.00 0.00 0.00 0.00 0.00 ]
G [ 0.00 0.00 0.00 0.00 0.03 0.01 0.00 -0.00 -0.00 0.00 0.00 0.07 0.02 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 ]
T [ -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.01 -0.00 -0.00 -0.00 -0.00 -0.00 0.01 0.02 0.00 -0.00 -0.00 0.00 0.00 0.00 ]

Frequency matrix

A [ 2411 2256 2332 2177 2378 2388 2446 2401 2291 2451 2317 2427 2420 2348 2382 2686 2659 2531 2303 4090 762 1928 1366 280 8320 7255 8164 39 461 345 283 6772 2175 2458 1777 1991 2061 2180 2100 2273 2469 2360 2285 2365 2241 2310 2250 2409 2362 2345 ]
C [ 1955 2108 1998 1980 2075 2049 2053 2035 2134 1906 1901 1954 1885 1928 2015 2213 2196 2324 1784 352 270 625 2259 7276 114 82 11 15 88 2636 7148 607 2249 1854 1870 1959 2187 2112 2094 1925 2016 2088 2112 1996 2031 1838 2059 2064 1956 2138 ]
G [ 2092 2180 2177 2339 2110 2093 2048 2071 2069 2104 2232 2169 2367 2371 2207 1858 1513 1979 2620 3165 7018 3453 1992 421 185 1200 484 8607 3797 910 277 602 2481 2183 2585 2194 2243 2265 2164 2103 2018 2059 2187 2198 2271 2331 2228 2077 2171 2139 ]
T [ 2229 2143 2180 2191 2124 2157 2140 2180 2193 2226 2237 2137 2015 2040 2083 1930 2319 1853 1980 1080 637 2681 3070 710 68 150 28 26 4341 4796 979 706 1782 2192 2455 2543 2196 2130 2329 2386 2184 2180 2103 2128 2144 2208 2150 2137 2198 2065 ]

Hypothetical CWM

A [ 0.00 0.00 0.00 0.00 0.01 -0.00 0.00 -0.00 -0.01 0.04 0.04 0.04 -0.01 -0.01 -0.01 -0.01 0.03 0.00 -0.00 -0.01 -0.00 -0.00 -0.00 -0.00 ]
C [ 0.01 0.01 0.01 0.01 0.00 -0.00 -0.01 0.02 0.04 -0.01 -0.02 -0.01 -0.01 -0.02 0.02 0.04 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ]
G [ 0.00 0.01 0.01 0.01 0.02 0.04 0.02 0.01 -0.00 0.01 0.01 0.01 0.07 0.03 -0.00 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ]
T [ -0.00 -0.00 -0.00 0.00 -0.01 -0.01 0.01 0.02 0.01 -0.02 -0.01 -0.02 -0.01 0.03 0.03 0.00 -0.02 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 ]

Other motifs identified by TF-MoDISco

Motif name: counts.pos_patterns.pattern_1

Num. of seqlets: 4701

Motif name: counts.pos_patterns.pattern_2

Num. of seqlets: 2823

Motif name: counts.pos_patterns.pattern_3

Num. of seqlets: 2338

Motif name: counts.pos_patterns.pattern_4

Num. of seqlets: 1978

Motif name: counts.pos_patterns.pattern_5

Num. of seqlets: 1653

Motif name: counts.pos_patterns.pattern_6

Num. of seqlets: 1391

Motif name: counts.pos_patterns.pattern_7

Num. of seqlets: 1315

Motif name: counts.pos_patterns.pattern_8

Num. of seqlets: 1020

Motif name: counts.pos_patterns.pattern_9

Num. of seqlets: 995

Motif name: counts.pos_patterns.pattern_10

Num. of seqlets: 829

Motif name: counts.pos_patterns.pattern_11

Num. of seqlets: 717

Motif name: counts.pos_patterns.pattern_12

Num. of seqlets: 340

Motif name: counts.pos_patterns.pattern_13

Num. of seqlets: 117

Motif name: counts.pos_patterns.pattern_14

Num. of seqlets: 105

Motif name: counts.pos_patterns.pattern_15

Num. of seqlets: 77

Motif name: counts.pos_patterns.pattern_18

Num. of seqlets: 42

Motif name: counts.pos_patterns.pattern_20

Num. of seqlets: 26

Motif name: counts.pos_patterns.pattern_22

Num. of seqlets: 20