Detailed information of deep learning profile BP001198.1

This page shows detailed deep learning-derived predictions and motifs for RUNX3 in GM12878 using a single trained BPNet model.

Model details

Name: RUNX3
Model ID: BP001198.1
Cell line/tissue: GM12878
Class: Runt domain factors
Family: Runt-related factors
JASPAR ID: MA0684.3
Taxon: Vertebrates
Species: Homo sapiens
Data Type: ChIP-seq
Uniprot ID: Q13761  
Source: ENCSR000BRI
Model: BPNet
Download trained model
Download TF-MoDISco Report

Contribution weight matrix (CWM)

A [ -0.00 0.00 0.01 0.02 0.03 0.00 -0.00 0.02 -0.00 0.02 0.01 0.00 0.00 ]
C [ 0.00 0.00 0.00 -0.00 0.00 0.08 0.09 0.00 0.06 -0.00 -0.00 0.00 0.00 ]
G [ 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ]
T [ -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 ]

Frequency matrix

A [ 4676 4678 4417 4228 4892 4318 4384 4903 4303 4690 4340 4923 5157 4917 4255 4417 4379 4998 5131 5112 4125 3983 4666 7384 9936 13154 6 4 12699 434 12733 6716 5434 4840 5194 4252 4584 4150 4788 4283 4387 4863 4334 4369 4336 4440 4744 4199 4548 4422 ]
C [ 3196 3202 3211 3973 3377 3614 3615 3216 3359 3186 3136 3240 2999 3327 3293 3380 4094 3656 3570 3458 3650 3837 3888 1809 1113 881 15215 15219 130 14555 705 1346 3039 3296 3092 3660 3352 3668 3585 3889 3687 3476 3584 3462 3307 3753 3250 3885 3443 3718 ]
G [ 3359 3353 3241 2984 3004 2869 2951 3075 3517 3403 3757 3192 3266 3098 3196 3676 3137 2774 2783 2833 2806 3218 3551 710 3037 1178 1 1 1392 119 416 4785 3311 3582 2852 3520 3431 3073 3045 2924 2874 3004 2922 3048 3126 3064 3155 3049 2999 2980 ]
T [ 3998 3996 4360 4044 3956 4428 4279 4035 4050 3950 3996 3874 3807 3887 4485 3756 3619 3801 3745 3826 4648 4191 3124 5326 1143 16 7 5 1008 121 1375 2382 3445 3511 4091 3797 3862 4338 3811 4133 4281 3886 4389 4350 4460 3972 4080 4096 4239 4109 ]

Hypothetical CWM

A [ -0.00 -0.00 0.01 0.02 0.04 -0.03 -0.04 0.02 -0.01 0.02 0.01 0.00 0.00 ]
C [ 0.01 0.01 0.00 -0.01 0.01 0.08 0.09 -0.02 0.06 -0.01 -0.00 0.01 0.01 ]
G [ 0.01 0.02 -0.01 0.01 0.01 -0.03 -0.01 0.04 -0.01 0.00 0.01 0.01 0.01 ]
T [ -0.00 -0.00 0.01 -0.01 -0.04 -0.02 -0.03 -0.02 -0.01 -0.01 -0.00 -0.00 -0.00 ]

Other motifs identified by TF-MoDISco

Motif name: counts.pos_patterns.pattern_1

Num. of seqlets: 4873

Motif name: counts.pos_patterns.pattern_2

Num. of seqlets: 1676

Motif name: counts.pos_patterns.pattern_3

Num. of seqlets: 1617

Motif name: counts.pos_patterns.pattern_4

Num. of seqlets: 1391

Motif name: counts.pos_patterns.pattern_5

Num. of seqlets: 1290

Motif name: counts.pos_patterns.pattern_6

Num. of seqlets: 1071

Motif name: counts.pos_patterns.pattern_7

Num. of seqlets: 889

Motif name: counts.pos_patterns.pattern_8

Num. of seqlets: 780

Motif name: counts.pos_patterns.pattern_9

Num. of seqlets: 414

Motif name: counts.pos_patterns.pattern_10

Num. of seqlets: 225

Motif name: counts.pos_patterns.pattern_11

Num. of seqlets: 209

Motif name: counts.pos_patterns.pattern_13

Num. of seqlets: 187

Motif name: counts.pos_patterns.pattern_14

Num. of seqlets: 101

Motif name: counts.pos_patterns.pattern_17

Num. of seqlets: 83

Motif name: counts.pos_patterns.pattern_18

Num. of seqlets: 83

Motif name: counts.pos_patterns.pattern_21

Num. of seqlets: 61

Motif name: counts.pos_patterns.pattern_24

Num. of seqlets: 48

Motif name: counts.neg_patterns.pattern_1

Num. of seqlets: 44

Motif name: counts.pos_patterns.pattern_28

Num. of seqlets: 29

Motif name: counts.pos_patterns.pattern_30

Num. of seqlets: 23

Motif name: counts.pos_patterns.pattern_31

Num. of seqlets: 23

Motif name: counts.neg_patterns.pattern_7

Num. of seqlets: 23