Detailed information of deep learning profile BP001198.1

This page shows detailed deep learning-derived predictions and motifs for RUNX3 in GM12878 using a single trained BPNet model.

Model details

Name: RUNX3
Model ID: BP001198.1
Cell line/tissue: GM12878
Class: Runt domain factors
Family: Runt-related factors
JASPAR ID: MA0684.3
Taxon: Vertebrates
Species: Homo sapiens
Data Type: ChIP-seq
Uniprot ID: Q13761  
Source: ENCSR000BRI
Model: BPNet
Download trained model
Download TF-MoDISco Report

Contribution weight matrix (CWM)

A [ -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 ]
C [ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 ]
G [ 0.00 0.00 -0.00 -0.00 0.06 0.00 0.09 0.08 0.00 -0.00 0.00 0.00 0.00 ]
T [ 0.00 0.00 0.01 0.02 -0.00 0.02 -0.00 0.00 0.03 0.02 0.01 0.00 -0.00 ]

Frequency matrix

A [ 4109 4239 4096 4080 3972 4460 4350 4389 3886 4281 4133 3811 4338 3862 3797 4091 3511 3445 2382 1375 121 1008 5 7 16 1143 5326 3124 4191 4648 3826 3745 3801 3619 3756 4485 3887 3807 3874 3996 3950 4050 4035 4279 4428 3956 4044 4360 3996 3998 ]
C [ 2980 2999 3049 3155 3064 3126 3048 2922 3004 2874 2924 3045 3073 3431 3520 2852 3582 3311 4785 416 119 1392 1 1 1178 3037 710 3551 3218 2806 2833 2783 2774 3137 3676 3196 3098 3266 3192 3757 3403 3517 3075 2951 2869 3004 2984 3241 3353 3359 ]
G [ 3718 3443 3885 3250 3753 3307 3462 3584 3476 3687 3889 3585 3668 3352 3660 3092 3296 3039 1346 705 14555 130 15219 15215 881 1113 1809 3888 3837 3650 3458 3570 3656 4094 3380 3293 3327 2999 3240 3136 3186 3359 3216 3615 3614 3377 3973 3211 3202 3196 ]
T [ 4422 4548 4199 4744 4440 4336 4369 4334 4863 4387 4283 4788 4150 4584 4252 5194 4840 5434 6716 12733 434 12699 4 6 13154 9936 7384 4666 3983 4125 5112 5131 4998 4379 4417 4255 4917 5157 4923 4340 4690 4303 4903 4384 4318 4892 4228 4417 4678 4676 ]

Hypothetical CWM

A [ -0.00 -0.00 -0.00 -0.01 -0.01 -0.02 -0.03 -0.02 -0.04 -0.01 0.01 -0.00 -0.00 ]
C [ 0.01 0.01 0.01 0.00 -0.01 0.04 -0.01 -0.03 0.01 0.01 -0.01 0.02 0.01 ]
G [ 0.01 0.01 -0.00 -0.01 0.06 -0.02 0.09 0.08 0.01 -0.01 0.00 0.01 0.01 ]
T [ 0.00 0.00 0.01 0.02 -0.01 0.02 -0.04 -0.03 0.04 0.02 0.01 -0.00 -0.00 ]

Other motifs identified by TF-MoDISco

Motif name: counts.pos_patterns.pattern_1

Num. of seqlets: 4873

Motif name: counts.pos_patterns.pattern_2

Num. of seqlets: 1676

Motif name: counts.pos_patterns.pattern_3

Num. of seqlets: 1617

Motif name: counts.pos_patterns.pattern_4

Num. of seqlets: 1391

Motif name: counts.pos_patterns.pattern_5

Num. of seqlets: 1290

Motif name: counts.pos_patterns.pattern_6

Num. of seqlets: 1071

Motif name: counts.pos_patterns.pattern_7

Num. of seqlets: 889

Motif name: counts.pos_patterns.pattern_8

Num. of seqlets: 780

Motif name: counts.pos_patterns.pattern_9

Num. of seqlets: 414

Motif name: counts.pos_patterns.pattern_10

Num. of seqlets: 225

Motif name: counts.pos_patterns.pattern_11

Num. of seqlets: 209

Motif name: counts.pos_patterns.pattern_13

Num. of seqlets: 187

Motif name: counts.pos_patterns.pattern_14

Num. of seqlets: 101

Motif name: counts.pos_patterns.pattern_17

Num. of seqlets: 83

Motif name: counts.pos_patterns.pattern_18

Num. of seqlets: 83

Motif name: counts.pos_patterns.pattern_21

Num. of seqlets: 61

Motif name: counts.pos_patterns.pattern_24

Num. of seqlets: 48

Motif name: counts.neg_patterns.pattern_1

Num. of seqlets: 44

Motif name: counts.pos_patterns.pattern_28

Num. of seqlets: 29

Motif name: counts.pos_patterns.pattern_30

Num. of seqlets: 23

Motif name: counts.pos_patterns.pattern_31

Num. of seqlets: 23

Motif name: counts.neg_patterns.pattern_7

Num. of seqlets: 23